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Paclitaxel,1 a diterpenoid originally isolated from the bark
of the Pacific yew,Taxus breVifolia, is a powerful antimitotic
agent2 that acts by promoting tubulin assembly into stable
aggregated structures. Although paclitaxel has shown tremen-
dous potential as an anticancer compound,3 its use as an
anticancer drug is compromised by its poor aqueous solubility.
For this reason, a number of water-soluble paclitaxel prodrugs
have been synthesized that contain hydrophilic or charged
functionalities attached to specific sites on the paclitaxel
molecule.4

Acylation at the 2′ position (for the structure of paclitaxel,
see Figure 1) can be a very effective strategy for improving the
water solubility of paclitaxel.4 Interestingly, acylation of the
C-2′ hydroxyl eliminates microtubule stabilization but not
cytotoxicity, which is consistent with the hydrolytic regeneration
of paclitaxel from pro-paclitaxel within the cell.5 Water soluble
pro-paclitaxels modified at the 2′ position include arylsulfonyl
ethoxycarbonates and thiodiglycolic esters synthesized by
Nicolaou et al.,4a the most soluble of which were 100-1000
times more soluble than paclitaxel.
In the present work, we establish for the first time that

paclitaxel can be enzymatically derivatized6 in an organic
solvent7 to generate new potential prodrugs possessing high
solubility in water. Our approach is based on a unique strategy

of two-step enzymatic acylation depicted in Figure 1. In the
first step, the starting compound is reacted with a bifunctional
acylating agent to give an activated acyl derivative, which is
then used as a complex acyl donor in the second step of the
derivatization procedure. In accordance with this strategy, the
starting point of the present work was to identify an appropriate
enzyme catalyst suitable for acylation of paclitaxel in the first
step. After a wide range of enzymes and solvents8 were tested,
thermolysin (an extracellular protease fromBacillus thermo-
proteolyticus rokko) suspended in anhydroustert-amyl alcohol
was identified to be the most effective catalyst for paclitaxel
acylation.9 In particular, this enzyme-catalyzed acylation of
paclitaxel with a bifunctional acyl donor, divinyl adipate, as
determined by TLC and HPLC. The reactivity of thermolysin
toward paclitaxel was enhanced ca. 20-fold by lyophilizing the
enzyme in the presence of KCl prior to use.10 Using the salt-
activated enzyme preparation (5.7 mg/mL protein), ca. 90%
conversion of paclitaxel (14 mM solution) was obtained in 96
h in the presence of 45 mM divinyl adipate. Following
termination of the reaction,11 two products were isolated from
the reaction mixture via preparative HPLC. The identities of
these products were determined by mass and1H NMR spec-
troscopies to be paclitaxel 2′-vinyl adipate (7, major) and
7-epipaclitaxel 2′-vinyl adipate (14, minor) (Table 1). Isolated
yields of the products (based on the starting amount of
paclitaxel) were 60 and 18%, respectively. Thus, thermolysin
is an extremely regioselective enzyme toward the 2′-hydroxyl
moiety of paclitaxel, as no other hydroxyl groups on the
paclitaxel molecule were esterified in the enzymatic reaction.
In addition to divinyl adipate, several other straight-chain vinyl
esters were suitable for the thermolysin-catalyzed acylation of
paclitaxel under conditions described above for divinyl adipate.
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Figure 1. Two-step enzymatic modification of paclitaxel resulting in
paclitaxel 2′-adipic acid (29) and paclitaxel 2′-adipoylglucose (30).
Reaction conditions are described in the text.
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In all cases, acylation was specific to the 2′-hydroxyl group of
paclitaxel with 96 h conversions of at least 50% (Table 1).12,13

In the second step of the two-step acylation procedure,
following purification of the paclitaxel 2′-vinyl adipate by
preparative HPLC, hydrolysis of the terminal vinyl ester group
was performed in acetonitrile (containing 1% water) catalyzed

by the lipase fromCandida antarctica(Novozym 435, Novo
Nordisk) (75 mg/ml) to give paclitaxel 2′-adipic acid (29) with
75% isolated yield. Paclitaxel 2′-vinyl adipate was also used
as the acyl donor for transesterification in dry acetonitrile
containing glucose (0.36 M) as the acyl acceptor resulting in
the formation of paclitaxel 2′-adipoylglucose (30) with 85%
isolated yield (presumably linked selectively to the 6-hydroxyl
moiety of the sugar16 ). Using a similar procedure, we also
succeeded in synthesizing paclitaxel 2′-adipoylmannose and
paclitaxel 2′-adipoylfructose starting from paclitaxel 2′-vinyl
adipate and the corresponding sugar. This two-step process
demonstrates the unique advantage of enzymatic catalysis,
namely the high regioselectivity of hydrolysis/transesterification
to generate paclitaxel derivatives.17

Both the free adipic acid and sugar-containing paclitaxel
derivatives were more soluble in water than paclitaxel itself.
Specifically, the solubility of paclitaxel (<4 µg/mL) is increased
58 and 1625-fold for the paclitaxel 2′-adipoylglucose and
paclitaxel 2′-adipic acid, respectively. Thus, the enzymatic
addition of polar functionalities onto the 2′-position of paclitaxel
results in dramatic improvement in paclitaxel’s water solubility.
In summary, paclitaxel is a substrate for thermolysin-catalyzed

transacylation reactions intert-amyl alcohol, being transformed
into water-soluble potential prodrugs with hydrophilic func-
tionalities off of the 2′-hydroxyl group.
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Table 1. Enzymatically Synthesized 2′-Acyl Paclitaxel
Derivativesa

conversion (%)b

acyl R group in
paclitaxel-OR cmpd

paclitaxel
deriv cmpd

7-epipacli-
taxel derivc

Esters
-C(O)CH3 1 57 8 30
-C(O)CH2Cl 2 70 9 3
-C(O)CHdCH2 3 80 10 10
-C(O)CH2CH3 4 78 11 12
-C(O)(CH2)2CH3 5 67 12 11
-C(O)(CH2)4CH3 6 50 13 7
-C(O)CH2(CH2)4C(O)-
OCHdCH2

7 69 14 31

Carbonates
-C(O)O(CH2)3CH3 15 80 22 20
-C(O)ONdC(CH3)2 16 89 23 11
-C(O)OCH2CHdCHCH2-
OC(O)OCHdCH2

17 81 24 10

-C(O)OCH2CH2CH(CH3)-
OC(O)OCHdCH2

18 60 25 9

-C(O)OCH2CH2CH2OC-
(O)OCHdCH2

19 69 26 9

O
O

O

O O

O

20 83 27 13

O

O

O O

O

21 25 28 4

a Formation of 2′-substituted paclitaxel derivatives was confirmed
on the basis of the characteristic downfield shift of the C2′ proton signal
from 4.7 to 5.6 ppm, representing an unequivocal proof of 2′-
substitution.18Signals from other paclitaxel ring protons were essentially
identical to those previously reported for 2′-acyl paclitaxels.18 bDe-
termined from relative peak areas on HPLC chromatograms. For
structural confirmation, part of the reaction mixture was subjected to
preparative HPLC to isolate a small amount of the product needed for
mass spectral and NMR analyses.c Formation of 7-epipaclitaxel was
found to be a spontaneous process not related to enzyme action.
Epimerization occurred during prolonged incubation of paclitaxel in
tert-amyl alcohol at the increased temperature required for enzymatic
acylation (35°C). Spontaneous epimerization of paclitaxel in mildly
basic aqueous solutions has been observed previously.19 Epimerization
at the 7 position was established on the basis of the characteristic
merging of signals from protons at C20 into a singlet at 4.3 ppm and
the shift of the C7 proton signal from 4.4 ppm to 3.7 ppm, which
unambiguously indicate the formation of 7-epimer.20
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